Description
周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利。大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了。同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况。用H表示正面朝上,用T表示反面朝上,扔很多次硬币后,会得到一个硬币序列。比如HTT表示第一次正面朝上,后两次反面朝上。但扔到什么时候停止呢?大家提议,选出\(n\)个同学,每个同学猜一个长度为\(m\)的序列,当某一个同学猜的序列在硬币序列中出现时,就不再扔硬币了,并且这个同学胜利,为了保证只有一个同学胜利,同学们猜的\(n\)个序列两两不同。很快,\(n\)个同学猜好序列,然后进入了紧张而又刺激的扔硬币环节。你想知道,如果硬币正反面朝上的概率相同,每个同学胜利的概率是多少。
Input
第一行两个整数\(n,m\)。
接下里n行,每行一个长度为m的字符串,表示第i个同学猜的序列。 \(1<=n,m<=300\)Output
输出n行,第i行表示第i个同学胜利的概率。
输出与标准输出的绝对误差不超过\(1e-6\)即视为正确。Sample Input
3 3
THT TTH HTTSample Output
0.3333333333
0.2500000000 0.4166666667数据规模
\(1\leq n,m \leq 300\)
乍一看是 [JSOI2009]有趣的游戏,但是数据范围不支持。于是标解就用了个十分神仙的方法减少了方程数。
我们还是从 [JSOI2009]有趣的游戏 的思路开始分析。我们发现中间状态太多了,所以我们将转移到中间状态的期望设为\(x_0\)。然后\(x_i (1\leq i \leq n)\)表示第\(i\)个人胜利的期望。
因为该题依然期望\(=\)概率,所以依然有\(x_1+x_2+...+x_n=1\)。
然后就是最神仙的方程了。
我们设\(P(i)\)表示在游戏中途(未结束时)出现的所有字符串后面接上第\(i\)个字符串得到的字符串出现的期望。
首先,\(P(i)=\frac{1}{2^m}x_0 .\)我们在任意一个中间状态后面加上第\(i\)个字符串,就可以得到想要的结果。因为每种字符出现概率相同,所以出现第\(i\)个串的概率为\(\frac{1}{2^m}\)。我们再考虑用用其他的变量表示\(P(i)\)。
显然出现了这种字符串代表游戏一定结束了,但是游戏不一定在这个时候结束,赢家不一定是\(i\),因为可能在插入第\(i\)个串的中途就匹配上了一个字符串。我们发现出现这种情况一定是一个字符串\(j\)的长度为\(k(1\leq k < m)\)的后缀与\(i\)字符串的长度为\(k\)的前缀相同(注意这里\(j\)是可以等于\(i\)的)。画个图就很好理解了。
然后再在后面补上\(m-k\)个字符就可以了。这部分的概率是\(\frac{1}{2^{m-k}}\)。
我们考虑出现上述情况的时候赢家一定是\(j\),所以第\(i\)个字符串对\(P(i)\)的贡献就是\(g(i,j)=\displaystyle \sum_{k=1}^{m-1}[j的k后缀=i的k前缀]\frac{1}{2^{m-k}}\)。
快速求出所有\(k\)可以考虑用\(kmp\)。
于是我们有列出了\(n\)个方程:$\displaystyle \sum_{j=1}^ng(i,j)x_j+x_i=\frac{1}{2^m}x_0 $。
然后解方程就行了。
代码:
#include#include #include #include #include #include #include #include #include